We address the task of unconditional head motion generation to animate still human faces in a low-dimensional semantic space.Deviating from talking head generation conditioned on audio that seldom puts emphasis on realistic head motions, we devise a GAN-based architecture that allows obtaining rich head motion sequences while avoiding known caveats associated with GANs.Namely, the autoregressive generation of incremental outputs ensures smooth trajectories, while a multi-scale discriminator on input pairs drives generation toward better handling of high and low frequency signals and less mode collapse.We demonstrate experimentally the relevance of the proposed architecture and compare with models that showed state-of-the-art performances on similar tasks.


翻译:我们处理的是无条件的头部运动生成到低维的语义空间中的动人面部的任务。 从以很少强调现实头部动作的音频为条件的说话头部生成,我们设计了一个基于GAN的架构,允许获得丰富的头部运动序列,同时避免与GANs相关的已知警告。 Name 可以说,自动递增式的增量产出生成可以确保平稳的轨迹,而投入对口的多级歧视者则推动对高频和低频信号的生成,减少模式崩溃。 我们实验地展示了拟议结构的相关性,并比较了在类似任务上显示最新表现的模型。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员