Unpaired video-to-video translation aims to translate videos between a source and a target domain without the need of paired training data, making it more feasible for real applications. Unfortunately, the translated videos generally suffer from temporal and semantic inconsistency. To address this, many existing works adopt spatiotemporal consistency constraints incorporating temporal information based on motion estimation. However, the inaccuracies in the estimation of motion deteriorate the quality of the guidance towards spatiotemporal consistency, which leads to unstable translation. In this work, we propose a novel paradigm that regularizes the spatiotemporal consistency by synthesizing motions in input videos with the generated optical flow instead of estimating them. Therefore, the synthetic motion can be applied in the regularization paradigm to keep motions consistent across domains without the risk of errors in motion estimation. Thereafter, we utilize our unsupervised recycle and unsupervised spatial loss, guided by the pseudo-supervision provided by the synthetic optical flow, to accurately enforce spatiotemporal consistency in both domains. Experiments show that our method is versatile in various scenarios and achieves state-of-the-art performance in generating temporally and semantically consistent videos. Code is available at: https://github.com/wangkaihong/Unsup_Recycle_GAN/.
翻译:未经编辑的视频到视频翻译旨在将视频在一个源和目标域之间翻译,而不需要配对培训数据,从而使其更适合实际应用。不幸的是,翻译视频一般都存在时间和语义不一致的问题。为了解决这个问题,许多现有作品采用了根据运动估计得出的时间信息,在时间一致性方面存在着超模时空限制。然而,对运动的估计不准确,导致对空间一致性的指导质量下降,导致翻译不稳定。在这项工作中,我们提出了一个新颖的范式,通过将输入视频中的动作与生成的光学流合成,而不是估算这些动作,来规范输入视频的波段时空一致性。因此,合成动作可以在正规化范式中应用,使跨区域运动保持一致,而不会有运动估计错误的风险。之后,我们利用我们未经监督的循环和不受监督的空间损失,在合成光学流提供的假超视的指导下,准确落实两个领域的空间一致性。实验显示,我们的方法在各种情景中具有灵活性,在生成时时时空/时空/时空周期性视频中实现州-州-州-州-州-州-州/州-州-州-州-州-州-州-州-州-州/州-州-州-州-州-州-州-州-州-州/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州