This paper tackles the problem of video object segmentation, given some user annotation which indicates the object of interest. The problem is formulated as pixel-wise retrieval in a learned embedding space: we embed pixels of the same object instance into the vicinity of each other, using a fully convolutional network trained by a modified triplet loss as the embedding model. Then the annotated pixels are set as reference and the rest of the pixels are classified using a nearest-neighbor approach. The proposed method supports different kinds of user input such as segmentation mask in the first frame (semi-supervised scenario), or a sparse set of clicked points (interactive scenario). In the semi-supervised scenario, we achieve results competitive with the state of the art but at a fraction of computation cost (275 milliseconds per frame). In the interactive scenario where the user is able to refine their input iteratively, the proposed method provides instant response to each input, and reaches comparable quality to competing methods with much less interaction.


翻译:本文处理视频对象分割问题, 给一些用户说明, 表明感兴趣的对象。 问题被写成在学习的嵌入空间中以像素方式检索: 我们将同一对象实例的像素嵌入彼此的邻近地区, 使用一个完全演化的网络, 其培训是经过修改的三重损失的嵌入模型。 然后, 附加说明的像素设定为参考, 其余像素则使用近邻方式分类 。 提议的方法支持不同种类的用户输入, 如第一个框架的分割面罩( 半监控情景), 或一组稀少的点击点( 互动情景) 。 在半监督的情景中, 我们取得与艺术状态相竞争的结果, 但以计算成本的一小部分( 每框架275毫秒) 。 在用户能够以迭代方式改进其输入的交互式假设中, 拟议的方法为每种输入提供即时反应, 并达到相似的质量, 与相竞方法相比, 互动性要少得多 。

6
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Deep Co-Training for Semi-Supervised Image Segmentation
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
Top
微信扫码咨询专知VIP会员