We present a neural network for rendering binaural speech from given monaural audio, position, and orientation of the source. Most of the previous works have focused on synthesizing binaural speeches by conditioning the positions and orientations in the feature space of convolutional neural networks. These synthesis approaches are powerful in estimating the target binaural speeches even for in-the-wild data but are difficult to generalize for rendering the audio from out-of-distribution domains. To alleviate this, we propose Neural Fourier Shift (NFS), a novel network architecture that enables binaural speech rendering in the Fourier space. Specifically, utilizing a geometric time delay based on the distance between the source and the receiver, NFS is trained to predict the delays and scales of various early reflections. NFS is efficient in both memory and computational cost, is interpretable, and operates independently of the source domain by its design. With up to 25 times lighter memory and 6 times fewer calculations, the experimental results show that NFS outperforms the previous studies on the benchmark dataset.


翻译:我们展示了一个神经网络,用于从源头的音频、位置和方向上进行双声讲话。以前的大部分作品都侧重于通过调整进化神经网络特征空间的位置和方向来合成双声讲话。这些合成方法在估计目标双声讲话方面是强大的,即使是在瞬间数据也是如此,但很难概括用于从传播外域获取音频。为了减轻这一影响,我们提议了Neural Fourier Shift(NFS),这是一个新的网络结构,使Fourier空间能够进行双声讲话。具体地说,利用基于源与接收者距离的几何时间延迟,NFS受过培训,可以预测各种早期反射的延迟和规模。NFS在记忆和计算成本上都是高效的,是可以解释的,并且通过设计独立于源域运作。由于有25倍的记忆和6倍的计算,实验结果显示NFSFS超越了先前的基准数据集研究。

0
下载
关闭预览

相关内容

NFS是一种分布式文件系统协议,最初由Sun Microsystems公司开发,并于1984年发布。[1]其功能旨在允许客户端主机可以像访问本地存储一样通过网络访问服务器端文件。 NFS和其他许多协议一样,是基于开放网络运算远程过程调用(ONC RPC)协议之上的。它是一个开放、标准的RFC协议,任何人或组织都可以依据标准实现它。 >
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年5月25日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员