Supernumerary Robotics Device (SRD) is an ideal solution to provide robotic assistance in overhead manual manipulation. Since two arms are occupied for the overhead task, it is desired to have additional arms to assist us in achieving other subtasks such as supporting the far end of a long plate and pushing it upward to fit in the ceiling. In this study, a method that maps human muscle force to SRD for overhead task assistance is proposed. Our methodology is to utilize redundant DoFs such as the idle muscles in the leg to control the supporting force of the SRD. A sEMG device is worn on the operator's shank where muscle signals are measured, parsed, and transmitted to SRD for control. In the control aspect, we adopted stiffness control in the task space based on torque control at the joint level. We are motivated by the fact that humans can achieve daily manipulation merely through simple inherent compliance property in joint driven by muscles. We explore to estimate the force of some particular muscles in humans and control the SRD to imitate the behaviors of muscle and output supporting forces to accomplish the subtasks such as overhead supporting. The sEMG signals detected from human muscles are extracted, filtered, rectified, and parsed to estimate the muscle force. We use this force information as the intent of the operator for proper overhead supporting force. As one of the well-known compliance control methods, stiffness control is easy to achieve using a few of straightforward parameters such as stiffness and equilibrium point. Through tuning the stiffness and equilibrium point, the supporting force of SRD in task space can be easily controlled. The muscle force estimated by sEMG is mapped to the desired force in the task space of the SRD. The desired force is transferred into stiffness or equilibrium point to output the corresponding supporting force.


翻译:超多机器人设备(SRD) 是一种理想的解决方案, 用于提供机械操作操作操作操作的机械辅助 。 由于两只手臂用于管理性任务, 需要增加武器来帮助我们实现其他子任务, 比如支持长板的远端, 并将它推到顶部。 在这次研究中, 提出了一种方法, 将人体肌肉力量映射到SRD 用于管理性任务援助。 我们的方法是使用多余的 DoF 方法, 比如腿中的闲置肌肉来控制 SRD 的辅助力量。 SEMG 设备被戴在操作员的骨架上, 测量、 并传送到操作员的骨架上。 在控制方面, 我们在任务空间空间控制方面采取了严格的控制控制控制。 SEM 信号只能通过由肌肉联合驱动的简单固有的合规性遵守性财产来实现日常操纵。 我们探索的是, 一些特殊的肌肉的力量的力量的力量的力量, 并控制SRD 能够模仿肌肉和输出的动作, 支持正常的肌肉和输出力 支持性控制力的动作, 将SEM 检测到正常的操作方法 。 SEM 。 将SD 检测, 将SD 用于 。 Srevd 进行 进行 进行空间控制, 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
28+阅读 · 2020年11月4日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员