Age of Information (AoI) reflects the time that is elapsed from the generation of a packet by a 5G user equipment(UE) to the reception of the packet by a controller. A design of an AoI-aware radio resource scheduler for UEs via reinforcement learning is proposed in this paper. In this paper, we consider a remote control environment in which a number of UEs are transmitting time-sensitive measurements to a remote controller. We consider the AoI minimization problem and formulate the problem as a trade-off between minimizing the sum of the expected AoI of all UEs and maximizing the throughput of the network. Inspired by the success of machine learning in solving large networking problems at low complexity, we develop a reinforcement learning-based method to solve the formulated problem. We used the state-of-the-art proximal policy optimization algorithm to solve this problem. Our simulation results showthat the proposed algorithm outperforms the considered baselines in terms of minimizing the expected AoI while maintaining the network throughput.
翻译:信息时代( AoI) 反映了从一个 5G 用户设备生成一个包到一个控制器接收该包的时间间隔。 本文中建议设计一个通过强化学习为 UES 设计的 AoI-aware 无线电资源调度器。 在本文中, 我们考虑一个远程控制环境, 许多 EIS 正在向一个远程控制器传输对时间敏感的测量数据。 我们认为 AoI 最小化问题, 并将此问题描述为在尽可能减少预期的 AoI 与尽量扩大网络的吞吐量之间的权衡。 在机器学习成功解决低复杂性的大联网问题之后, 我们开发了一种强化学习法来解决所提出的问题。 我们用最先进的准XIA优化政策算法解决这个问题。 我们的模拟结果表明, 拟议的算法在将预期的AoI 最小化的同时维持网络的吞吐量, 超过了所考虑的基线。