Many important robotics problems are partially observable in the sense that a single visual or force-feedback measurement is insufficient to reconstruct the state. Standard approaches involve learning a policy over beliefs or observation-action histories. However, both of these have drawbacks; it is expensive to track the belief online, and it is hard to learn policies directly over histories. We propose a method for policy learning under partial observability called the Belief-Grounded Network (BGN) in which an auxiliary belief-reconstruction loss incentivizes a neural network to concisely summarize its input history. Since the resulting policy is a function of the history rather than the belief, it can be executed easily at runtime. We compare BGN against several baselines on classic benchmark tasks as well as three novel robotic touch-sensing tasks. BGN outperforms all other tested methods and its learned policies work well when transferred onto a physical robot.


翻译:许多重要的机器人问题可以部分地观察到,因为单一的视觉或武力回溯测量不足以重建国家。标准方法包括学习关于信仰或观察-行动历史的政策。但是,这两种方法都有缺点;在线跟踪信仰是昂贵的;很难直接了解历史方面的政策。我们提出了一个在部分可观察性下进行政策学习的方法,即信仰-圆形网络(BGN ), 辅助性信仰-重建损失激励神经网络简洁地总结其输入历史。由于由此产生的政策是历史的函数,而不是信仰,因此很容易在运行时执行。我们将BGN与经典基准任务的若干基线以及三种新型机器人触摸-遥感任务进行比较。 BGN 超越了所有其他经过测试的方法,在转移到物理机器人时,它所学的政策效果很好。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
52+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
3+阅读 · 2018年1月31日
Top
微信扫码咨询专知VIP会员