Unsupervised deep learning has recently demonstrated the promise to produce high-quality samples. While it has tremendous potential to promote the image colorization task, the performance is limited owing to the manifold hypothesis in machine learning. This study presents a novel scheme that exploiting the score-based generative model in wavelet domain to address the issue. By taking advantage of the multi-scale and multi-channel representation via wavelet transform, the proposed model learns the priors from stacked wavelet coefficient components, thus learns the image characteristics under coarse and detail frequency spectrums jointly and effectively. Moreover, such a highly flexible generative model without adversarial optimization can execute colorization tasks better under dual consistency terms in wavelet domain, namely data-consistency and structure-consistency. Specifically, in the training phase, a set of multi-channel tensors consisting of wavelet coefficients are used as the input to train the network by denoising score matching. In the test phase, samples are iteratively generated via annealed Langevin dynamics with data and structure consistencies. Experiments demonstrated remarkable improvements of the proposed model on colorization quality, particularly on colorization robustness and diversity.


翻译:未经监督的深层学习最近显示出了生产高质量样本的希望。 虽然它具有巨大的潜力促进图像色彩化任务, 但由于机器学习的多重假设, 效果有限。 本研究提出了一个新方案, 利用波盘域中基于分数的基因化模型来解决这个问题。 通过波盘变换, 拟议的模型利用多尺度和多通道的表达方式, 从堆叠的波盘系数组成部分中学习前科, 从而在粗糙和详细频谱下共同有效地学习图像特征。 此外, 这种没有对称优化的高度灵活的基因化模型可以在波盘域的双重一致性条件下更好地执行色化任务, 即数据一致性和结构一致性。 具体地说, 在培训阶段, 一组由波盘系数组成的多通道变速器, 通过分数匹配来作为培训网络的投入。 在测试阶段, 样本通过带有数据和结构组合的单向兰格文动态, 反复生成。 实验显示, 彩色化质量的拟议模型显著改进, 特别是彩色度和多样性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
45+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员