We analyze Kumar's recent quadratic algebraic branching program size lower bound proof method (CCC 2017). We provide a refinement of this method and show examples in which the refined method gives a better lower bound than the original one. The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved resorting to classical intersection theory. Further, we use similar methods to improve the known lower bound methods for slice rank of polynomials. We give a sequence of polynomials for which the improved lower bound matches the known upper bound.
翻译:我们分析了 Kumar 最近的四边代数分解程序下限检验法( CCC 2017 ) 。 我们对这一方法进行了完善, 并展示了精细方法比原方法更低约束的示例。 下限依赖于单数多义定义的超表层上的Noether- Lefschetz 类型条件。 在我们提供的明确例子中, 下限被证明使用经典交叉理论。 此外, 我们使用类似方法改进已知的多面体切片的较低约束方法。 我们给出了一组多面体, 改进后的下限与已知的上界相匹配 。