Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters. Due to the large variations in both topological structure and geometric details of 3D objects, this remains a challenging task and the lack of large scale labeled data also constrain the performance of deep learning based approaches. In this paper, we tackle the task of object kinematic motion prediction problem in a semi-weakly supervised manner. Our key observations are two-fold. First, although 3D dataset with fully annotated motion labels is limited, there are existing datasets and methods for object part semantic segmentation at large scale. Second, semantic part segmentation and mobile part segmentation is not always consistent but it is possible to detect the mobile parts from the underlying 3D structure. Towards this end, we propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters, which are further refined based on geometric alignment. This network can be first trained on PartNet-Mobility dataset with fully labeled mobility information and then applied on PartNet dataset with fine-grained and hierarchical part-level segmentation. The network predictions yield a large scale of 3D objects with pseudo labeled mobility information and can further be used for weakly-supervised learning with pre-existing segmentation. Our experiments show there are significant performance boosts with the augmented data for previous method designed for kinematic motion prediction on 3D partial scans.
翻译:给定一个三维物体,运动学运动预测的目标是确定移动部件以及相应的运动参数。由于3D物体在拓扑结构和几何细节方面都有很大变化,这仍然是一个具有挑战性的问题,缺乏大规模标注的数据也限制了基于深度学习的方法的性能。在本文中,我们以半弱监督的方式解决物体运动学运动预测问题。我们的关键观察有两个。首先,虽然具有完全注释运动标签的3D数据集是有限的,但是存在用于大规模物体部分语义分割的数据集和方法。其次,语义部分分割和移动部分分割并不总是一致的,但是可以从底层的3D结构中检测移动部分。为此,我们提出了一种图神经网络,用于学习层次化的部分级别分割和移动部分参数之间的映射,根据几何对齐进行进一步修正。该网络可以首先在PartNet-Mobility数据集上进行训练,该数据集具有完全标记的可移动性信息,然后应用于具有细粒度分层部分级别分割的PartNet数据集。网络预测产生大量具有伪标记的可移动性信息的3D对象,并可进一步用于先前设计用于3D局部扫描的运动学运动预测的弱监督学习。我们的实验表明,增加数据量的方法在之前的方法上为离线运动学运动预测任务带来了显著的提升。