A binary modified de Bruijn sequence is an infinite and periodic binary sequence derived by removing a zero from the longest run of zeros in a binary de Bruijn sequence. The minimal polynomial of the modified sequence is its unique least-degree characteristic polynomial. Leveraging on a recent characterization, we devise a novel general approach to determine the minimal polynomial. We translate the characterization into a problem of identifying a Hamiltonian cycle in a specially constructed graph. Along the way, we demonstrate the usefullness of computational tools from the cycle joining method in the modified setup.
翻译:布鲁琴二进制的二进制序列是一个无限的、周期性的二进制序列,从布鲁琴二进制序列中从最长的零点运行中去除零,由此得出一个无限的、周期性的二进制序列。经过修改的序列的最小多元性是其独特的最低度特性多元性。我们利用最近的一项定性,设计了一种新颖的一般方法来确定最小的多元性。我们把这一定性转化为在特别构造的图形中确定汉密尔顿周期的问题。与此同时,我们展示了在经过修改的设置中的循环组合方法中计算工具的实用性。