Noisy annotations such as missing annotations and location shifts often exist in crowd counting datasets due to multi-scale head sizes, high occlusion, etc. These noisy annotations severely affect the model training, especially for density map-based methods. To alleviate the negative impact of noisy annotations, we propose a novel crowd counting model with one convolution head and one transformer head, in which these two heads can supervise each other in noisy areas, called Cross-Head Supervision. The resultant model, CHS-Net, can synergize different types of inductive biases for better counting. In addition, we develop a progressive cross-head supervision learning strategy to stabilize the training process and provide more reliable supervision. Extensive experimental results on ShanghaiTech and QNRF datasets demonstrate superior performance over state-of-the-art methods. Code is available at https://github.com/RaccoonDML/CHSNet.


翻译:这些吵闹的注释严重影响了模型培训,特别是密度地图方法。为了减轻噪音说明的负面影响,我们提议采用一个新的人群计数模式,即一个革命头目和一个变压器头,让这两个头目在吵闹地区互相监督,称为跨总督导。由此产生的模型CHS-Net可以将不同类型的诱导偏差协同起来,以便更好地计数。此外,我们制定了渐进式跨头督导学习战略,以稳定培训过程并提供更可靠的监督。上海科技和QNRF数据集的广泛实验结果显示优于最先进的方法。代码可在https://github.com/RaccoonDML/CHSNet上查阅。</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员