The task of age transformation illustrates the change of an individual's appearance over time. Accurately modeling this complex transformation over an input facial image is extremely challenging as it requires making convincing and possibly large changes to facial features and head shape, while still preserving the input identity. In this work, we present an image-to-image translation method that learns to directly encode real facial images into the latent space of a pre-trained unconditional GAN (e.g., StyleGAN) subject to a given aging shift. We employ a pre-trained age regression network used to explicitly guide the encoder in generating the latent codes corresponding to the desired age. In this formulation, our method approaches the continuous aging process as a regression task between the input age and desired target age, providing fine-grained control over the generated image. Moreover, unlike other approaches that operate solely in the latent space using a prior on the path controlling age, our method learns a more disentangled, non-linear path. Finally, we demonstrate that the end-to-end nature of our approach, coupled with the rich semantic latent space of StyleGAN, allows for further editing of the generated images. Qualitative and quantitative evaluations show the advantages of our method compared to state-of-the-art approaches.
翻译:年龄变换的任务显示了个人长期外观的变化。 在输入面部图像上精确地模拟这种复杂变异是非常困难的,因为它要求对面部特征和头部形状进行令人信服的和可能的大规模改变,同时仍然保留输入身份。在这项工作中,我们提出了一个图像到图像的翻译方法,该方法可以将真实面部图像直接编码到一个经过预先训练的无条件GAN(例如StyleGAN)的隐蔽空间中,以一定的变换为条件。我们使用一个经过训练的年龄回归网络,明确引导编码编码生成与理想年龄相适应的潜在代码。在这一配方中,我们的方法将持续变形过程作为输入年龄和理想目标年龄之间的回归任务,为生成图像提供细微的对照控制。此外,与其他方法不同的是,我们的方法在潜在空间中只使用前的路径控制年龄控制空间运行,我们的方法学习了一种更加不连贯的非线性路径。 最后,我们展示了我们方法的最终到尾端性质,同时展示了与Slegal-hal Q 生成的图像的精度潜深层空间和定量评估方法的对比性方法。