Information-theoretic quantities reveal dependencies among variables in the structure of joint, marginal, and conditional entropies, but leave some fundamentally different systems indistinguishable. Furthermore, there is no consensus on how to construct and interpret a higher-order generalisation of mutual information (MI). In this manuscript, we show that a recently proposed model-free definition of higher-order interactions amongst binary variables (MFIs), like mutual information, is a M\"obius inversion on a Boolean algebra, but of surprisal instead of entropy. This gives an information-theoretic interpretation to the MFIs, and by extension to Ising interactions. We study the dual objects to MI and MFIs on the order-reversed lattice, and find that dual MI is related to the previously studied differential mutual information, while dual interactions (outeractions) are interactions with respect to a different background state. Unlike mutual information, in- and outeractions uniquely identify all six 2-input logic gates, the dy- and triadic distributions, and different causal dynamics that are identical in terms of their Shannon-information content.
翻译:信息理论数量显示,在联合、边际和有条件的寄生虫结构中,各种变量之间有依赖性,但使一些根本不同的系统无法区分。此外,对于如何构建和解释更高层次的互通信息(MI),还没有达成共识。在本手稿中,我们表明,最近提出的对二进制变量(MFIs)之间较高级互动的无模式定义,如同相互信息一样,是M\“obius”对Boulean代谢的反向,而是对超正数的反向。这给微额供资提供了信息理论解释,并扩展至Ising互动。我们研究了与MI和MIS的双向目标,在顺序反向的套装上,发现双元MI与以前研究过的不同互通信息相关,而双重互动(外向)则与不同的背景状态相关。与相互信息不同,内外行动独有特色地识别了所有六个二进逻辑门,即三进制分布,以及不同的因果动力动态在香农信息内容上是相同的。