Parameter reconstruction for diffusion equations has a wide range of applications. In this paper, we proposed a two-stage scheme to efficiently solve conductivity reconstruction problems for steady-state diffusion equations with solution data measured inside the domain. The first stage is based on total variation regularization of the log diffusivity and the split Bregman iteration method. In the second stage, we apply the K-means clustering for the reconstruction of ``blocky'' conductivity functions. The convergence of the scheme is theoretically proved and extensive numerical examples are shown to demonstrate the performance of the scheme.
翻译:用于扩散方程式的参数重建应用范围很广。 在本文中,我们提出了一个两阶段计划,以有效解决稳定状态扩散方程式的电导重建问题,并使用在域内测量的解决方案数据。 第一阶段基于对正对 diffusiversity 和 分裂 Bregman 迭代法的完全变换规范化。 在第二阶段,我们应用K- means 组合来重建“ 阻塞” 传导功能。 该计划的趋同得到了理论上的证明, 并展示了广泛的数字例子来显示该计划的绩效。