Open RAN introduces a flexible, cloud-based architecture for the Radio Access Network (RAN), enabling Artificial Intelligence (AI)/Machine Learning (ML)-driven automation across heterogeneous, multi-vendor deployments. While EXplainable Artificial Intelligence (XAI) helps mitigate the opacity of AI models, explainability alone does not guarantee reliable network operations. In this article, we propose a lightweight verification approach based on interpretable models to validate the behavior of Deep Reinforcement Learning (DRL) agents for RAN slicing and scheduling in Open RAN. Specifically, we use Decision Tree (DT)-based verifiers to perform near-real-time consistency checks at runtime, which would be otherwise unfeasible with computationally expensive state-of-the-art verifiers. We analyze the landscape of XAI and AI verification, propose a scalable architectural integration, and demonstrate feasibility with a DT-based slice-verifier. We also outline future challenges to ensure trustworthy AI adoption in Open RAN.
翻译:暂无翻译