High-probability guarantees in stochastic optimization are often obtained only under strong noise assumptions such as sub-Gaussian tails. We show that such guarantees can also be achieved under the weaker assumption of bounded variance by developing a stochastic proximal point method. This method combines a proximal subproblem solver, which inherently reduces variance, with a probability booster that amplifies per-iteration reliability into high-confidence results. The analysis demonstrates convergence with low sample complexity, without restrictive noise assumptions or reliance on mini-batching.
翻译:暂无翻译