Simulation of stochastic partial differential equations (SPDE) on a general domain requires a discretization of the noise. In this paper, the noise is discretized by a piecewise linear interpolation. The error caused by this is analyzed in the context of a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polygon. The noise is Gaussian, white in time and correlated in space. It is modeled as a standard cylindrical Wiener process on the reproducing kernel Hilbert space associated to the covariance kernel. The noise is assumed to extend to a larger polygon than the SPDE domain to allow for sampling by the circulant embedding method. The interpolation error is analyzed under mild assumptions on the kernel. The main tools used are Hilbert--Schmidt bounds of multiplication operators onto negative order Sobolev spaces and an error bound for the finite element interpolant in fractional Sobolev norms. Examples with covariance kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Conclusions from the analysis include that interpolation of noise with Mat\'ern kernels does not cause an additional error, that there exist kernels where the interpolation error dominates and that generation of noise on a coarser mesh than that of the SPDE discretization does not always result in a loss of accuracy.
翻译:普通域模拟部分差异方程式( SPDE) 的模拟, 需要将噪声分解。 在本文中, 噪音通过一个片断线性线性内插将噪音分解为离散。 由此引起的错误是在一个半线性随机反演反演扩散扩散方程式的完全离散的有限元素近似的背景下分析的。 所使用的主要工具是: 高尔伯- 白色, 在空间中与负顺序空间相交。 它被建为在再生成内核Hilbert 空间相关空间的标准的单流性精度精度维纳进程。 噪音被假定扩大到比 SPDECE 域范围更大的多边形, 以便允许通过嵌入法取样。 内核半线性反射反射反射方程式的偏差。 主要的工具是: 高尔伯尔夫- Schmockt 操作员对负线性内空空间进行多重反射线, 以及小点 Sobol 规范内定元素的内存误差。 例如, 离差性极性误差性多点的多点, 和磁性磁性 解 的磁度分析结果 。