We introduce an integral representation of the Monge-Amp\`ere equation, which leads to a new finite difference method based upon numerical quadrature. The resulting scheme is monotone and fits immediately into existing convergence proofs for the Monge-Amp\`ere equation with either Dirichlet or optimal transport boundary conditions. The use of higher-order quadrature schemes allows for substantial reduction in the component of the error that depends on the angular resolution of the finite difference stencil. This, in turn, allows for significant improvements in both stencil width and formal truncation error. The resulting schemes can achieve a formal accuracy that is arbitrarily close to $\mathcal{O}(h^2)$, which is the optimal consistency order for monotone approximations of second order operators. We present three different implementations of this method. The first two exploit the spectral accuracy of the trapezoid rule on uniform angular discretizations to allow for computation on a nearest-neighbors finite difference stencil over a large range of grid refinements. The third uses higher-order quadrature to produce superlinear convergence while simultaneously utilizing narrower stencils than other monotone methods. Computational results are presented in two dimensions for problems of various regularity.
翻译:我们引入了蒙古-安培- 安培- ere 方程式的整体代表, 从而导致基于数字二次曲线的新的有限差分法。 由此产生的方案为单色, 并立即适用于以迪里切特或最佳运输边界条件的蒙古- 安培- ere 方程式的现有趋同证明。 使用高阶二次订单操作员的单色近似或最佳运输边界条件。 使用高阶二次曲线的二次曲线计划可以大量减少误差的成分, 这取决于有限差分的斜度的角分辨率。 这反过来又可以大大改进细度宽度宽度和正式脱轨误差。 由此形成的方案可以实现一种任意接近于 $\ mathcal{ O}( h) ( h) 2$ 的正式精度, 这是第二次订单操作员单色近似的当前最佳一致性顺序。 我们提出了三种不同的方法。 头两种方法利用关于统一角离子离心离子的光谱规则的光谱精度精确度规则, 以便计算近邻差差差差值在大范围电网格精度精度的精度改进。 。 。 第三次使用更高阶二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次二次的二次二次二次的二次二次二次二次的二次二次的二次的二次的二次的二次的二次合并, 以产生超固化结果, 。