As Advanced Persistent Threats (APTs) grow increasingly sophisticated, the demand for effective detection methods has intensified. This study addresses the challenge of identifying APT campaign attacks through system event logs. A cascading approach, name SFM, combines Technique hunting and APT campaign attribution. Our approach assumes that real-world system event logs contain a vast majority of normal events interspersed with few suspiciously malicious ones and that these logs are annotated with Techniques of MITRE ATT&CK framework for attack pattern recognition. Then, we attribute APT campaign attacks by aligning detected Techniques with known attack sequences to determine the most likely APT campaign. Evaluations on five real-world APT campaigns indicate that the proposed approach demonstrates reliable performance.
翻译:暂无翻译