Domain adaptation for semantic segmentation aims to improve the model performance in the presence of a distribution shift between source and target domain. Leveraging the supervision from auxiliary tasks~(such as depth estimation) has the potential to heal this shift because many visual tasks are closely related to each other. However, such a supervision is not always available. In this work, we leverage the guidance from self-supervised depth estimation, which is available on both domains, to bridge the domain gap. On the one hand, we propose to explicitly learn the task feature correlation to strengthen the target semantic predictions with the help of target depth estimation. On the other hand, we use the depth prediction discrepancy from source and target depth decoders to approximate the pixel-wise adaptation difficulty. The adaptation difficulty, inferred from depth, is then used to refine the target semantic segmentation pseudo-labels. The proposed method can be easily implemented into existing segmentation frameworks. We demonstrate the effectiveness of our proposed approach on the benchmark tasks SYNTHIA-to-Cityscapes and GTA-to-Cityscapes, on which we achieve the new state-of-the-art performance of $55.0\%$ and $56.6\%$, respectively. Our code is available at \url{https://github.com/qinenergy/corda}.
翻译:在源和目标域间分配变化的情况下,对语义区段进行校正调整的目的是改进模型性能; 利用辅助任务-(例如深度估计)的监督作用,有可能弥补这一变化,因为许多视觉任务彼此密切相关; 然而,这种监督并不总是可以做到。 在这项工作中,我们利用在两个域内都可以得到的自我监督深度估计的指导,以弥合领域间的差距。一方面,我们提议明确了解任务性能的关联性,以在目标深度估计的帮助下加强目标语义预测。另一方面,我们利用源与目标深度分解器的深度预测差异,以近似像素的适应困难。从深度推断的适应困难,然后用来改进目标语义分解的假标签。提议的方法可以很容易地应用于现有的分解框架。我们提议的方法在SYNTHIA-Cityscovers和GTA-toCitycaporations等基准性任务上的有效性。我们用新的州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-