This paper addresses the domain shift problem for segmentation. As a solution, we propose OLVA, a novel and lightweight unsupervised domain adaptation method based on a Variational Auto-Encoder (VAE) and Optimal Transport (OT) theory. Thanks to the VAE, our model learns a shared cross-domain latent space that follows a normal distribution, which reduces the domain shift. To guarantee valid segmentations, our shared latent space is designed to model the shape rather than the intensity variations. We further rely on an OT loss to match and align the remaining discrepancy between the two domains in the latent space. We demonstrate OLVA's effectiveness for the segmentation of multiple cardiac structures on the public Multi-Modality Whole Heart Segmentation (MM-WHS) dataset, where the source domain consists of annotated 3D MR images and the unlabelled target domain of 3D CTs. Our results show remarkable improvements with an additional margin of 12.5\% dice score over concurrent generative training approaches.
翻译:本文针对区域偏移问题 。 作为解决方案, 我们建议 OLVA, 这是一种基于变异自动计算器( VAE) 和最佳迁移( OT) 理论的新颖和轻量的不受监督的域适应方法。 由于 VAE, 我们的模型学习了一个共同的跨领域潜伏空间, 这个空间遵循正常分布, 减少了域移位。 为了保证有效的区域偏移, 我们共同的潜伏空间是用来模拟形状而不是强度变化的模型。 我们进一步依靠 OT 损失来匹配和校正潜空中两个域之间的剩余差异。 我们展示 OLVA 在公共多式全心偏移( MM- WHS) 数据集中多个心脏结构的分解效果, 源域由附加说明的 3D MM 图像和3D CT 未标定的目标域组成。 我们的结果显示了显著的改进, 在同时的基因化培训方法上增加了12 ⁇ dice 分的差值 。