Markov decision process models and algorithms can be used to identify optimal policies for dispatching ambulances to spatially distributed customers, where the optimal policies indicate the ambulance to dispatch to each customer type in each state. Since the optimal solutions are dependent on Markov state variables, they may not always correspond to a simple set of rules when implementing the policies in practice. Restricted policies that conform to a priority list for each type of customer may be desirable for use in practice, since such policies are transparent, explainable, and easy to implement. A priority list policy is an ordered list of ambulances that indicates the preferred order to dispatch the ambulances to a customer type subject to ambulance availability. This paper proposes a constrained Markov decision process model for identifying optimal priority list policies that is formulated as a mixed integer programming model, does not extend the Markov state space, and can be solved using standard algorithms. A series of computational examples illustrate the approach. The optimal mixed integer programming solutions to the computational examples have objective function values that are close to those of the unrestricted model and are superior to those of heuristics.
翻译:Markov 决策程序模式和算法可用于确定向空间分布的客户派遣救护车的最佳政策,其中最佳政策表明救护车可向每个州的每一类客户派遣。由于最佳解决办法取决于Markov 州变量,因此在执行政策时可能并不总是符合一套简单的规则。符合每类客户优先清单的限制性政策可能适宜在实践中使用,因为这种政策透明、可解释和易于执行。优先清单政策是一份订购的救护车清单,其中显示将救护车送往可得到救护车的客户类型的首选顺序。本文提出一个有限的Markov 决策程序模式,用以确定作为混合整数方案拟订模式制定的最佳优先清单政策,不扩大Markov 州空间,并且可以使用标准算法加以解决。一系列计算示例可以说明这一方法。计算示例的最佳混合组合组合方案拟订方法具有客观功能值,接近不受限制的模式,并且优于超值。