Recent progress in empirical and certified robustness promises to deliver reliable and deployable Deep Neural Networks (DNNs). Despite that success, most existing evaluations of DNN robustness have been done on images sampled from the same distribution that the model was trained on. Yet, in the real world, DNNs may be deployed in dynamic environments that exhibit significant distribution shifts. In this work, we take a first step towards thoroughly investigating the interplay between empirical and certified adversarial robustness on one hand and domain generalization on another. To do so, we train robust models on multiple domains and evaluate their accuracy and robustness on an unseen domain. We observe that: (1) both empirical and certified robustness generalize to unseen domains, and (2) the level of generalizability does not correlate well with input visual similarity, measured by the FID between source and target domains. We also extend our study to cover a real-world medical application, in which adversarial augmentation enhances both the robustness and generalization accuracy in unseen domains.


翻译:尽管取得了这一成功,但对DNN的稳健性的大多数现有评价都是对模型所培训的相同分布的图像进行的。然而,在现实世界中,DNN可能会在动态环境中部署,而动态环境中的分布变化显著。在这项工作中,我们迈出了第一步,彻底调查经验型和经认证的对立强性之间的相互作用和对域的概括性。为了做到这一点,我们在多个领域培养了强健模型,并评估了这些模型在无形领域的准确性和稳健性。我们注意到:(1) 经验型和经认证的稳健性普遍适用于无形领域,以及(2) 通用性水平与输入的视觉相似性没有很好的联系,而输入的视觉相似性是由FID在源和目标领域之间测量的。我们还将我们的研究扩大到涵盖真实世界的医疗应用,在这种应用中,对抗性增强增强对隐蔽域的稳健性和一般准确性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
14+阅读 · 2022年5月6日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员