For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is optimally stable in the sense that, when applied to a relevant model problem, it has a larger stability region than alternative integrators. This generalizes a well-known property of the common St\"{o}rmer/Verlet/leapfrog algorithm, which of course arises from Strang splitting based on the (kinetic/potential) split systems $\dot q = M^{-1} p$, $\dot p = 0$ and $\dot q = 0$, $\dot p = -Aq+f(q)$.
翻译:对于以 $\ dot q = M ⁇ - 1} p$, $\ dot p = - Aq+f (q)$, 许多应用中常见的系统, 我们分析基于( 线性/ 非线性) 分裂系统 $\ dot q = M ⁇ - 1} p$, $\ dot p = 0 美元, $\ dot p = f( q)$。 我们显示, 众所周知的分解是最佳稳定的, 因为当应用到一个相关的模型问题时, 它比替代集成者具有更大的稳定性区域。 这一般化了共同的 St\\ " { o}rmer/ Verlet/leapfrog 算法的一个众所周知的属性, 这当然产生于基于( 皮肤/ ) 分裂系统 $\ dot q = M ⁇ -1}, $\ dot p = 0 q q q = 0, $\\\\\ a = pdo q= 0.