Non-uniqueness and instability are characteristic features of image reconstruction processes. As a result, it is necessary to develop regularization methods that can be used to compute reliable approximate solutions. A regularization method provides of a family of stable reconstructions that converge to an exact solution of the noise-free problem as the noise level tends to zero. The standard regularization technique is defined by variational image reconstruction, which minimizes a data discrepancy augmented by a regularizer. The actual numerical implementation makes use of iterative methods, often involving proximal mappings of the regularizer. In recent years, Plug-and-Play image reconstruction (PnP) has been developed as a new powerful generalization of variational methods based on replacing proximal mappings by more general image denoisers. While PnP iterations yield excellent results, neither stability nor convergence in the sense of regularization has been studied so far. In this work, we extend the idea of PnP by considering families of PnP iterations, each being accompanied by its own denoiser. As our main theoretical result, we show that such PnP reconstructions lead to stable and convergent regularization methods. This shows for the first time that PnP is mathematically equally justified for robust image reconstruction as variational methods


翻译:非独特性和不稳定性是图像重建过程的特征。因此,有必要制定正规化方法,用以计算可靠的近似解决办法。一种正规化方法提供稳定的重建家庭,随着噪音水平趋向于零,稳定地解决无噪音问题。标准的正规化技术通过变异的图像重建来界定,这种重建最大限度地缩小了数据差异,由常规化器放大了数据差异。实际数字实施采用迭接方法,经常涉及对常规化器进行准度绘图。近年来,普卢格和普莱图像重建(PnP)已经发展成为以更一般的图像低温器取代原始制图法为基础的变异方法的新的有力通用。虽然PnP的迭代结果非常出色,但迄今为止并没有研究正规化意义上的稳定性或趋同性。在这项工作中,我们扩大了PnP的构想,即考虑PnP的组合,每个组合都配有自己的解诺化器。我们的主要理论结果是,这种PnP的重建是稳定、趋同的数学变异性。这显示了数学方法的稳定性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
0+阅读 · 2023年2月10日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员