We construct bootstrap confidence intervals for a monotone regression function. It has been shown that the ordinary nonparametric bootstrap, based on the nonparametric least squares estimator (LSE) $\hat f_n$ is inconsistent in this situation. We show, however, that a consistent bootstrap can be based on the smoothed $\hat f_n$, to be called the SLSE (Smoothed Least Squares Estimator). The asymptotic pointwise distribution of the SLSE is derived. The confidence intervals, based on the smoothed bootstrap, are compared to intervals based on the (not necessarily monotone) Nadaraya Watson estimator and the effect of Studentization is investigated. We also give a method for automatic bandwidth choice, correcting work in Sen and Xu (2015). The procedure is illustrated using a well known dataset related to climate change.


翻译:我们构建了一个单调回归函数的自助法置信区间。已经表明,基于非参数最小二乘估计器(LSE)$\hat {f_n}$的普通非参数自助法在这种情况下是不一致的。然而,我们展示了,基于平滑的 $\hat{f_n}$ 的一致性自助法可以被建立,并将其称为平滑最小二乘估计器(SLSE)。推导了 SLSE 的渐近点通分布。基于平滑自助法的置信区间与(不一定单调的)Nadaraya-Watson 估计器的区间进行了比较,并探讨了学生化的影响。我们还提供了一种自动带宽选择的方法,纠正了 Sen 和 Xu (2015) 的工作。该程序通过一个与气候变化相关的知名数据集进行演示。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:弹性网络回归
数萃大数据
91+阅读 · 2018年8月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:弹性网络回归
数萃大数据
91+阅读 · 2018年8月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员