Temporal graph learning aims to generate high-quality representations for graph-based tasks along with dynamic information, which has recently drawn increasing attention. Unlike the static graph, a temporal graph is usually organized in the form of node interaction sequences over continuous time instead of an adjacency matrix. Most temporal graph learning methods model current interactions by combining historical information over time. However, such methods merely consider the first-order temporal information while ignoring the important high-order structural information, leading to sub-optimal performance. To solve this issue, by extracting both temporal and structural information to learn more informative node representations, we propose a self-supervised method termed S2T for temporal graph learning. Note that the first-order temporal information and the high-order structural information are combined in different ways by the initial node representations to calculate two conditional intensities, respectively. Then the alignment loss is introduced to optimize the node representations to be more informative by narrowing the gap between the two intensities. Concretely, besides modeling temporal information using historical neighbor sequences, we further consider the structural information from both local and global levels. At the local level, we generate structural intensity by aggregating features from the high-order neighbor sequences. At the global level, a global representation is generated based on all nodes to adjust the structural intensity according to the active statuses on different nodes. Extensive experiments demonstrate that the proposed method S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.


翻译:时间图学习旨在为基于图表的任务生成高质量的展示,同时提供动态信息,而动态信息最近引起越来越多的注意。与静态图表不同,时间图通常以连续时间而不是相邻矩阵的节点互动序列的形式组织。大多数时间图学习方法通过合并历史信息来模拟当前互动。然而,这些方法仅仅考虑第一阶时间信息,而忽视重要的高阶结构信息,导致低端性能。为了解决这一问题,我们通过提取时间和结构信息来学习信息,学习更多的信息节点表达方式。我们提出了一种自我监督的方法,称为S2T,用于时间图学习。注意,第一阶时间信息和高阶结构信息以不同的方式组合在一起,最初节点显示可以分别计算两个条件的强度。随后引入了调整损失,以优化节点表达方式,通过缩小两种强度之间的差距来提供更丰富的信息。具体地说,除了利用历史相邻序列来模拟时间信息外,我们还进一步考虑从当地和全球两级的结构性信息。在最接近性图学级别上,没有根据不同的结构强度,我们用不同的结构序列生成了不同的结构模型,在10级上,我们根据不同的结构序列生成了不同的结构模型进行结构模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员