The Shapley Additive Global Importance (SAGE) value is a theoretically appealing interpretability method that fairly attributes global importance to a model's features. However, its exact calculation requires the computation of the feature's surplus performance contributions over an exponential number of feature sets. This is computationally expensive, particularly because estimating the surplus contributions requires sampling from conditional distributions. Thus, SAGE approximation algorithms only take a fraction of the feature sets into account. We propose $d$-SAGE, a method that accelerates SAGE approximation. $d$-SAGE is motivated by the observation that conditional independencies (CIs) between a feature and the model target imply zero surplus contributions, such that their computation can be skipped. To identify CIs, we leverage causal structure learning (CSL) to infer a graph that encodes (conditional) independencies in the data as $d$-separations. This is computationally more efficient because the expense of the one-time graph inference and the $d$-separation queries is negligible compared to the expense of surplus contribution evaluations. Empirically we demonstrate that $d$-SAGE enables the efficient and accurate estimation of SAGE values.
翻译:Shapley Additive Global Importance(SAGE)是一种理论上具有吸引力的可解释性方法,可以公平地分配模型特征的全域重要性。然而,其精确计算需要计算特征集合中的特征的剩余性能贡献,这是指数级的计算。这是计算上的负担,特别是因为估计剩余贡献需要从条件分布中进行采样。因此,SAGE逼近算法只考虑了特征集合的一部分。我们提出了一种名为d-SAGE的方法,该方法加速了SAGE逼近。d-SAGE是基于这样的观察而提出的,即特征与模型目标之间的条件独立性(CI)意味着零剩余贡献,因此可以跳过它们的计算。为了识别CI,我们利用因果结构学习(CSL)推断一个图,该图编码了(条件)独立性作为d-分离的数据。从计算角度来看,这样更加高效,因为单次图推断和d-分离查询的开销与剩余贡献计算的开销相比可以忽略不计。在实证方面,我们证明了d-SAGE可以实现高效和准确的SAGE值估计。