The rendering scheme in neural radiance field (NeRF) is effective in rendering a pixel by casting a ray into the scene. However, NeRF yields blurred rendering results when the training images are captured at non-uniform scales, and produces aliasing artifacts if the test images are taken in distant views. To address this issue, Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information. Nevertheless, this approach is only suitable for offline rendering since it relies on integrated positional encoding (IPE) to query a multilayer perceptron (MLP). To overcome this limitation, we propose mip voxel grids (Mip-VoG), an explicit multiscale representation with a deferred architecture for real-time anti-aliasing rendering. Our approach includes a density Mip-VoG for scene geometry and a feature Mip-VoG with a small MLP for view-dependent color. Mip-VoG encodes scene scale using the level of detail (LOD) derived from ray differentials and uses quadrilinear interpolation to map a queried 3D location to its features and density from two neighboring downsampled voxel grids. To our knowledge, our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously. We conducted experiments on multiscale datasets, and the results show that our approach outperforms state-of-the-art real-time rendering baselines.
翻译:神经辐射场(NeRF)中的渲染方案通过将射线投射到场景中来有效渲染像素。然而,当训练图像以不均匀尺度捕获时,NeRF会产生模糊的渲染结果,并且在远距离视图下会产生深度感知的失真伪影。为解决这个问题,Mip-NeRF提出了一种倒锥形的多尺度表示方法,以编码尺度信息。然而,由于它依赖于集成位置编码(IPE)来查询多层感知器(MLP),因此这种方法仅适用于离线渲染。为了克服这个限制,我们提出了Mip-VoG,一种具有延迟架构的显式多尺度表示,用于实时抗锯齿渲染。我们的方法包括一个用于场景几何的密度Mip-VoG和一个带有小型MLP的功能Mip-VoG,用于视角相关的颜色。Mip-VoG使用射线微分导出的细节级别(LOD)来编码场景尺度,并使用四线性插值将查询的3D位置映射到两个相邻的下采样体素网格的特征和密度。据我们所知,我们的方法是首个同时提供多尺度训练和实时抗锯齿渲染的方法。我们在多尺度数据集上进行了实验,结果表明我们的方法优于最先进的实时渲染方法。