项目名称: 基于同步多双目立体视觉的高精度人体建模
项目编号: No.61472349
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 计算机科学学科
项目作者: 冯结青
作者单位: 浙江大学
项目金额: 85万元
中文摘要: 在进行三维人体模型获取与真实感重建时,即使采用高速三维扫描仪或RGBD相机,仍然存在采集时间长所导致的数据时空不一致问题。因此如何同步地获取非刚性的人体外形数据并实现高精度重建,是一个具有挑战性的问题。本项目拟采用多台数码单反相机、在百分之一秒瞬间同步地采集人体外形的高分辨率图像数据,并通过研究多相机高效精确标定、面向皮肤弱纹理的稠密点云生成、多片大规模点云的鲁棒和精确配准、保细节人体模型曲面重建、不同姿态人体模型一致参数化和高质量压缩等一系列关键科学问题,重构精度可达0.5毫米的三维人体模型,完善和创新数字几何处理和立体视觉的相关理论和方法。同时,将上述研究成果集成为一个面向人体等非刚性对象的三维采集和建模系统,解决传统方法中存在的采集数据时空不一致及其建模精度不高问题,促进三维打印、影视特效、数字娱乐、人体测量、服装定制等应用发展。
中文关键词: 图形学;数字几何处理;三维重建;形状分析;计算机视觉
英文摘要: Even if a high-speed 3D scanner or RGBD camera is adopted to acquire and reconstruct a human body shape, the temporal and spatial inconsistence of the acquired data will occur because the acquisition time is too long to keep the human motionless. Thus it is still a challenge topic to acquire the non-rigid human body shape synchronously and achieve its high-precision reconstruction. In this project, a hardware system of human body acquisition is constructed to capture a human body in terms of high-resolution images, which is composed of tens of digital single lens reflex cameras. All of cameras can be synchronized in 0.01 seconds. To make the system feasible, the following key problems will be investigated deeply, i.e., efficient and accurate multi-camera calibrations, dense point clouds recovery from the skin images of weak texture; robust and accurate registration of multiple pieces of large scale point clouds, detail-preserving human body shape surface reconstruction, compatible parameterizations and high-quality compression of human body models with various poses, etc. As a result, the human body shape can be reconstructed with high-precision, whose error is less than 0.5mm. The research will develop and enrich the related theories and methods in digital geometry processing and stereo vision. Meanwhile, the developed techniques will be integrated into a prototype system of human body shape acquisition and reconstruction. The system will solve the problems of the temporal and spatial inconsistence of acquired data and the reconstruction accuracy in the traditional methods. The research and system will facilitate the human body shape related applications, such as 3D printing, special effects in film and TV, digital entertainment, somatometry, clothing custom, etc.
英文关键词: Computer Graphics;Digital Geometry Processing;3D Surface Reconstruction;Shape Analysis;Computer Vision