Dynamics and function of neuronal networks are determined by their synaptic connectivity. Current experimental methods to analyze synaptic network structure on the cellular level, however, cover only small fractions of functional neuronal circuits, typically without a simultaneous record of neuronal spiking activity. Here we present a method for the reconstruction of large recurrent neuronal networks from thousands of parallel spike train recordings. We employ maximum likelihood estimation of a generalized linear model of the spiking activity in continuous time. For this model the point process likelihood is concave, such that a global optimum of the parameters can be obtained by gradient ascent. Previous methods, including those of the same class, did not allow recurrent networks of that order of magnitude to be reconstructed due to prohibitive computational cost and numerical instabilities. We describe a minimal model that is optimized for large networks and an efficient scheme for its parallelized numerical optimization on generic computing clusters. For a simulated balanced random network of 1000 neurons, synaptic connectivity is recovered with a misclassification error rate of less than 1% under ideal conditions. We show that the error rate remains low in a series of example cases under progressively less ideal conditions. Finally, we successfully reconstruct the connectivity of a hidden synfire chain that is embedded in a random network, which requires clustering of the network connectivity to reveal the synfire groups. Our results demonstrate how synaptic connectivity could potentially be inferred from large-scale parallel spike train recordings.


翻译:神经网络的动态和功能由它们的突触连接性决定。 然而, 目前分析细胞水平上合成网络结构的实验方法只覆盖小部分功能性神经神经电路, 通常没有同时记录神经神经跳动活动。 我们在这里展示了从数千个平行的同步列列列记录中重建大型经常性神经网络的方法。 我们用的是连续时间对跳动活动的普遍线性模型进行最大可能性估计。 对于这个模型, 点进程可能性是相近的, 从而可以通过梯度上升获得参数的全球最佳化。 以往的方法, 包括同一类的方法, 不允许由于令人望目不及的计算成本和数字不稳定性, 而重建该数量级的经常性网络。 我们描述的是, 一个对大型网络最优化的最小模型, 以及一个对通用计算组的平行数字优化的高效计划。 对于一个模拟平衡的随机网络, 在理想条件下, synaptic 连接性可以以低于1%的误分类误差率恢复。 我们显示, 包括同一类在内的以往方法, 不允许由于过高的周期性网络的重复性网络重建, 在不甚理想的网络中, 将成功的连通性群组中, 显示, 我们的连通性网络的连连通性将要求一个潜在的连通性, 最后的连通性将一个不甚甚甚甚甚甚深。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络bp算法推导
统计学习与视觉计算组
11+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络bp算法推导
统计学习与视觉计算组
11+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员