Quantum degeneracy in error correction is a feature unique to quantum error correcting codes, unlike their classical counterpart. It allows a quantum error correcting code to correct errors even when they can not uniquely pinpoint the error. The diagonal distance of a quantum code is an important parameter that characterizes if the quantum code is degenerate or not. If code has a distance more than the diagonal distance, then it is degenerate, whereas if it is below the diagonal distance, then it is nondegenerate. We show that most of the CWS codes without a cycle of length four attain the upper bound of diagonal distance d+1, where d is the minimum vertex degree of the associated graph. Addressing the question of degeneracy, we give necessary conditions on CWS codes to be degenerate. We show that any degenerate CWS code with graph $G$ and classical code C will either have a short cycle in the graph $G$ or will be such that the classical code C has one of the coordinates trivially zero for all codewords.
翻译:错误校正中的量子变异性是量子错误校正代码的一个独特特征, 不同于古典对等方。 它允许量子差校正代码以更正错误, 即使它们无法单独定位错误。 量子代码的对角距离是一个重要参数, 如果量子代码退化与否, 它是一个重要参数。 如果代码的距离大于对角距离, 那么它就会退化, 而如果它低于对角距离, 那么它是非降解的。 我们显示, 大多数没有长度周期四的 CWS 代码都达到了对角距离 d+1 的上界, 其中 d 是相关图形的最小垂直度 。 处理调色度问题, 我们给 CWS 代码设定了必要的条件, 以便降解 。 我们显示, 任何带有图形$G$ 和 经典代码C 的退化的 CWS 代码, 都会在图形 $G$ 中有一个短周期, 或者说, 古典代码 C 在所有代码的坐标中有一个微不足道的零 。