The Distance Geometry Problem asks for a realization of a given weighted graph in $\mathbb{R}^K$. Two variants of this problem, both originating from protein conformation, are based on a given vertex order (which abstracts the protein backbone). Both variants involve an element of discrete decision in the realization of the next vertex in the order using $K$ preceding (already realized) vertices. The difference between these variants is that one requires the $K$ preceding vertices to be contiguous. The presence of this constraint allows one to prove, via a combinatorial counting of the number of solutions, that the realization algorithm is fixed-parameter tractable. Its absence, on the other hand, makes it possible to efficiently construct the vertex order directly from the graph. Deriving a combinatorial counting method without using the contiguity requirement would therefore be desirable. In this paper we prove that, unfortunately, such a counting method cannot be devised in general.
翻译:远程几何问题要求以 $mathbb{R ⁇ K$ 实现给定的加权图表 。 这个问题的两种变式, 都源自蛋白分解, 都基于给定的顶点顺序( 摘述蛋白脊柱 ) 。 两种变式都包含一个离散决定元素, 即实现下一个顶点的顺序, 使用前( 已经实现的) $K 。 这些变式的区别在于, 一种变式要求顶点之前的K美元是毗连的。 存在这种制约, 使得人们可以通过对解决方案数的组合计算来证明实现算法是固定参数可移动的 。 而另一方面, 不存在这种变式则使得能够直接从图形中有效地构建顶点顺序。 因此, 不使用毗连性要求来显示组合计法是可取的 。 在本文中, 我们证明, 不幸的是, 这种计法无法在总体上设计。