We give a construction of quantum LDPC codes of dimension $\Theta(\log N)$ and distance $\Theta(N/\log N)$ as the code length $N\to\infty$. Using a product of chain complexes this construction also provides a family of quantum LDPC codes of distance $\Omega(N^{1-\alpha/2}/\log N)$ and dimension $\Omega(N^\alpha \log N)$, where $0 \le \alpha < 1$. We also introduce and study a new operation called lifted product, which naturally generalizes the product operations for quantum codes and chain complexes. Moreover, as a simple byproduct of our results on quantum codes, we obtain a new result on classical codes. We show that for any fixed $R < 1$ there exists an asymptotically good family of classical quasi-cyclic LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $\Omega(N/\log N)$ as the code length $N\to\infty$.
翻译:我们给出了一个量子LDPC尺寸的量子代码 $\ Theta(\ log N) 美元和距离值 $\ Theta( N/\ log N) 美元,作为代码长度 $N\ to\ infy$。使用链复合体的产物,这种构造也提供了量子LDPC 距离值的量子代码 $Omega(N ⁇ 1- ALpha/2}/\ log N) 美元和尺寸 $Omega(N ⁇ alpha\ log N) 美元,其中0\le\ alpha < 1美元。我们还引入并研究一个叫作提升产品的新操作,它自然地将量子编码和链复合体的量子编码的产品操作概括化。此外,作为我们量子编码结果的一个简单的副产品,我们获得了经典代码的新结果。我们表明,对于任何固定值 < 1 美元和尺寸的纯度半周期LDPC 费率的量值的亚性良好家族,至少存在某种R$,在某种意义上,最佳的Circumcumant 大小为$\ $\ $\ nfine\ in nu dededededededeme $。