The distributed subgraph detection asks, for a fixed graph $H$, whether the $n$-node input graph contains $H$ as a subgraph or not. In the standard CONGEST model of distributed computing, the complexity of clique/cycle detection and listing has received a lot of attention recently. In this paper we consider the induced variant of subgraph detection, where the goal is to decide whether the $n$-node input graph contains $H$ as an \emph{induced} subgraph or not. We first show a $\tilde{\Omega}(n)$ lower bound for detecting the existence of an induced $k$-cycle for any $k\geq 4$ in the CONGEST model. This lower bound is tight for $k=4$, and shows that the induced variant of $k$-cycle detection is much harder than the non-induced version. This lower bound is proved via a reduction from two-party communication complexity. We complement this result by showing that for $5\leq k\leq 7$, this $\tilde{\Omega}(n)$ lower bound cannot be improved via the two-party communication framework. We then show how to prove stronger lower bounds for larger values of $k$. More precisely, we show that detecting an induced $k$-cycle for any $k\geq 8$ requires $\tilde{\Omega}(n^{2-\Theta{(1/k)}})$ rounds in the CONGEST model, nearly matching the known upper bound $\tilde{O}(n^{2-\Theta{(1/k)}})$ of the general $k$-node subgraph detection (which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman~[DISC 2019]. Finally, we investigate the case where $H$ is the diamond (the diamond is obtained by adding an edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and lower bounds on the complexity of the induced version of diamond detecting and listing.
翻译:分布式子图检测要求, 对于固定的图形 $2H, 美元平面 { node 输入图是否包含$H$ 作为子图 。 在标准 CONGEST 分布式计算模型中, cloque/ 周期检测和列表的复杂性最近受到了很多关注 。 在本文中, 我们考虑子图的诱导变量, 目标是决定 $- node 输入图是否包含 $ emph{ 引起 子图 。 我们首先显示 $\ 平面 { node 输入图是否包含 $( 美元平面 ) (n) 美元平面 美元平面 。 在 CONGEST 模型中, 以美元平面 美元平面 美元平面计算 美元平面 。 美元平面显示 美元平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 显示 平面平面平面平面平面平面平面平面平面平面平面平面, 。