Recently, codes in the sum-rank metric attracted attention due to several applications in e.g. multishot network coding, distributed storage and quantum-resistant cryptography. The sum-rank analogues of Reed-Solomon and Gabidulin codes are linearized Reed-Solomon codes. We show how to construct $h$-folded linearized Reed-Solomon (FLRS) codes and derive an interpolation-based decoding scheme that is capable of correcting sum-rank errors beyond the unique decoding radius. The presented decoder can be used for either list or probabilistic unique decoding and requires at most $\mathcal{O}(sn^2)$ operations in $\mathbb{F}_{q^m}$, where $s \leq h$ is an interpolation parameter and $n$ denotes the length of the unfolded code. We derive a heuristic upper bound on the failure probability of the probabilistic unique decoder and verify the results via Monte Carlo simulations.


翻译:最近,由于多发网络编码、分布式存储和量子抗衡加密等多种应用,总量度的代码吸引了注意。 Reed-Solomon 和 Gabidulin 代码的总当量类比线化 Reed-Solomon 代码。 我们展示了如何构建以美元为倍数的线性Reed-Solomon (FLRS) 代码, 并得出一个基于内推法的解码方案, 能够纠正独有解码半径以外的总当量错误。 显示的解码器既可用于列表, 也可以用于概率性独有的解码, 最多需要 $\ mathcal{O} (sn%2) 的操作 $\ most\mathb{F ⁇ q ⁇ m}, $s leq h$是内线性参数, 并且 $n demodes the loaddational codectioner 的失败概率上限, 我们通过蒙特卡洛 模拟来验证结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员