We study the problem of ordered stabbing of $n$ balls (of arbitrary and possibly different radii, no ball contained in another) in $\mathbb{R}^d$, $d \geq 3$, with either a directed line segment or a (directed) polygonal curve. Here, the line segment, respectively polygonal curve, shall visit (intersect) the given sequence of balls in the order of the sequence. We present a deterministic algorithm that decides whether there exists a line segment stabbing the given sequence of balls in order, in time $O(n^{4d-2} \log n)$. Due to the descriptional complexity of the region containing these line segments, we can not extend this algorithm to actually compute one. We circumvent this hurdle by devising a randomized algorithm for a relaxed variant of the ordered line segment stabbing problem, which is built upon the central insights from the aforementioned decision algorithm. We further show that this algorithm can be plugged into an algorithmic scheme by Guibas et al., yielding an algorithm for a relaxed variant of the minimum-link ordered stabbing path problem that achieves approximation factor 2 with respect to the number of links. We conclude with experimental evaluations of the latter two algorithms, showing practical applicability.
翻译:我们研究以$\mathbb{R ⁇ {R ⁇ d$, $d\geq 3$, 以直线线段或(方向的)多边形曲线, 定购刺杀一球的问题。 这里, 线段, 分别是多边形曲线, 应该按照序列顺序访问( 中间) 给定的球序列。 我们提出了一个确定算法, 决定是否有线段按顺序刺杀给定的球序列, 时间为$O( n ⁇ 4d-2}\log n) 。 由于包含这些线段的区域描述的复杂性, 我们无法将这一算法扩展为实际的计算 。 我们绕过这个障碍, 我们设计了一种随机算法, 用于按命令的线段刺杀问题的松动变种, 这是基于上述决定算法的核心洞察力。 我们进一步表明, 这个算法可以插入Guibas 等人的算法方案, 产生一个较宽松的最小的变法, 以最小的变法为最小的变法, 以显示我们所订购的精确性连接的2 的算法路径, 从而得出了两个精确的精确性 。