The horseshoe prior is known to possess many desirable properties for Bayesian estimation of sparse parameter vectors, yet its density function lacks an analytic form. As such, it is challenging to find a closed-form solution for the posterior mode. Conventional horseshoe estimators use the posterior mean to estimate the parameters, but these estimates are not sparse. We propose a novel expectation-maximisation (EM) procedure for computing the MAP estimates of the parameters in the case of the standard linear model. A particular strength of our approach is that the M-step depends only on the form of the prior and it is independent of the form of the likelihood. We introduce several simple modifications of this EM procedure that allow for straightforward extension to generalised linear models. In experiments performed on simulated and real data, our approach performs comparable, or superior to, state-of-the-art sparse estimation methods in terms of statistical performance and computational cost.
翻译:已知马蹄木先前的马蹄木对巴伊西亚稀有参数矢量估计具有许多可取的属性,但其密度功能缺乏分析形式。 因此,为后向模式找到封闭式解决方案是困难的。 常规马蹄树估计者使用后方推算参数的平均值, 但这些估算并不稀有。 我们提出了一个新颖的预期最大化(EM)程序,用于计算标准线性模型参数的MAP估计值。 我们的方法的一个特别强点是M级仅取决于先前的形式,而M级与可能性的形式无关。 我们对这一EM级程序进行了一些简单的修改,从而可以直接扩展到通用线性模型。 在模拟和真实数据的实验中,我们的方法在统计性能和计算成本方面可以与最先进的估算方法相比或优于最先进的估算方法。