Preconditioning has long been a staple technique in optimization, often applied to reduce the condition number of a matrix and speed up the convergence of algorithms. Although there are many popular preconditioning techniques in practice, most lack guarantees on reductions in condition number. Moreover, the degree to which we can improve over existing heuristic preconditioners remains an important practical question. In this paper, we study the problem of optimal diagonal preconditioning that achieves maximal reduction in the condition number of any full-rank matrix by scaling its rows and/or columns. We first reformulate the problem as a quasi-convex problem and provide a simple algorithm based on bisection. Then we develop an interior point algorithm with $O(\log(1/\epsilon))$ iteration complexity, where each iteration consists of a Newton update based on the Nesterov-Todd direction. Next, we specialize to one-sided optimal diagonal preconditioning problems, and demonstrate that they can be formulated as standard dual SDP problems. We then develop efficient customized solvers and study the empirical performance of our optimal diagonal preconditioning procedures through extensive experiments on large matrices. Our findings suggest that optimal diagonal preconditioners can significantly improve upon existing heuristics-based diagonal preconditioners at reducing condition numbers and speeding up iterative methods. Moreover, our implementation of customized solvers, combined with a random row/column sampling step, can find near-optimal diagonal preconditioners for matrices up to size 200,000 in reasonable time, demonstrating their practical appeal.


翻译:长期以来,先是优化主机技术,通常用于减少矩阵条件数,加快算法趋同。虽然在实践中有许多流行的前提条件技术,但大多数缺乏减少条件数的保障。此外,相对于现有的超脂性先决条件的改进程度仍然是一个重要的实际问题。在本论文中,我们研究了最佳对称先决条件问题,通过扩大行和(或)列,使任何全位矩阵的条件数达到最大减低。我们首先将问题改写为准同源数据问题,并提供一个基于双节的简单算法。然后我们用美元(log(1/epsilon))来开发内部点算法,对降低条件数进行最大程度的保证。我们发现,根据Nestorov-Todd方向,对牛顿更新。接下来,我们专门研究如何将任何全级矩阵的条件减低为一面的最佳异源数据,并表明它们可以作为标准的双向双向SDP问题。我们随后开发高效的定制解算方法,并研究我们最优化的底线前置程序在近两极时间级的超标前期程序中的实际表现。我们通过大规模实验,在高额的超额标准机极机极机极前机极前,我们发现,可以改进地改进了目前机极机极机极机率地压的机能。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员