In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.


翻译:在本篇文章中,我们提议了一种数据驱动的减少基准(RB)近似等离线和在线模式。该方法以离线和在线模式为基础。在离线阶段,我们使用POD方法生成快照并构建缩小空间的基础。高西亚进程回归法(GPR)用于接近缩小空间内顶生生物的eigen值和预测系数。所有与顶生生物值和预测系数相对应的GPR都通过离线阶段的培训,使用离线阶段生成的数据。与新参数相对应的产出可以在在线阶段使用经过培训的GPR获得。提议的算法用于解决侧翼和非侧翼参数依赖的eigen值问题。数字结果显示了拟议非侵入性方法的稳健性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员