In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.
翻译:在本篇文章中,我们提议了一种数据驱动的减少基准(RB)近似等离线和在线模式。该方法以离线和在线模式为基础。在离线阶段,我们使用POD方法生成快照并构建缩小空间的基础。高西亚进程回归法(GPR)用于接近缩小空间内顶生生物的eigen值和预测系数。所有与顶生生物值和预测系数相对应的GPR都通过离线阶段的培训,使用离线阶段生成的数据。与新参数相对应的产出可以在在线阶段使用经过培训的GPR获得。提议的算法用于解决侧翼和非侧翼参数依赖的eigen值问题。数字结果显示了拟议非侵入性方法的稳健性。