项目名称: 确定性单光子的固态量子存储

项目编号: No.11304305

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 唐建顺

作者单位: 中国科学技术大学

项目金额: 28万元

中文摘要: 在量子网络的构建中,单光子作为量子比特的载体,起着至关重要的作用。而半导体自组织量子点依托现已比较成熟的半导体工艺,在集成化的确定性单光子源的构建中具有先天的优势。另一方面,利用固态量子存储来实现光子比特的时间同步也是量子计算的一个重要环节。本项目主要研究如何将量子点发出的单光子存储到低掺杂Nd:YVO4固态量子存储器中去。主要内容包括单光子波长的精确调节、单光子频率线宽的压窄以及单光子收集效率的提高。拟采用的主要方法包括:通过在样品上加电场利用Stark效应调节量子点的发光峰至Nd:YVO4晶体的吸收线;利用共振激发的方法来减小量子点荧光的spectral diffusion效应,从而达到量子点的本征线宽;利用固态浸没透镜来匹配GaAs的折射率,扩大荧光的出射角度的范围,以此来提高单光子的收集效率。

中文关键词: 量子点;单光子源;固态量子存储;;

英文摘要: As the carrier of quantum bits (qbit), single photon plays an important role in the construction of quantum network. Semiconductor self-assembled quantum dot (QD) has the innate advantage in the fabrication of integrated deterministic single photon source, with the well-developed semiconductor technology. On the other hand, the application of solid-state quantum memory aiming to synchronize the photonic qbits is also an important step in the quantum computation. The main purpose of this project is to realize the memory of single photons emitted from QD into the Nd:YVO4 solid-state quantum memory. The main contents include: the fine tuning of the wavelength of single photons, the reduction of the single photons' linewidth, and the improvement of the collection efficiency of the single photons. The methods are mainly: the application of electric field, so that the QD emission can be shifted to the absorption line of Nd:YVO4 crystal by Stark effect; the utilization of resonant excitation to reduce the spectral diffusion effect, by which the intrinsic linewidth of QD can be reached; the application of solid immerse lens to match the refractive index of GaAs, making the collection efficiency of single photons highly improved.

英文关键词: Quantum dot;Single-photon source;Solid-state quantum memory;;

成为VIP会员查看完整内容
0

相关内容

【经典书】高效机器学习,Efficient Learning Machines,263页pdf
数据中心产业图谱研究报告,41页pdf
专知会员服务
53+阅读 · 2022年1月31日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
30+阅读 · 2021年10月12日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
ECCV 2018 | Bi-box行人检测:‘行人遮挡’为几何?
极市平台
13+阅读 · 2018年9月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
【经典书】高效机器学习,Efficient Learning Machines,263页pdf
数据中心产业图谱研究报告,41页pdf
专知会员服务
53+阅读 · 2022年1月31日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
30+阅读 · 2021年10月12日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员