Analysis of images of sets of fibers such as myelin sheaths or skeletal muscles must account for both the spatial distribution of fibers and differences in fiber shape. This necessitates a combination of point process and shape analysis methodology. In this paper, we develop a K-function for shape-valued point processes by embedding shapes as currents, thus equipping the point process domain with metric structure inherited from a reproducing kernel Hilbert space. We extend Ripley's K-function which measures deviations from spatial homogeneity of point processes to fiber data. The paper provides a theoretical account of the statistical foundation of the K-function and its extension to fiber data, and we test the developed K-function on simulated as well as real data sets. This includes a fiber data set consisting of myelin sheaths, visualizing the spatial and fiber shape behavior of myelin configurations at different debts.
翻译:光纤细胞或骨骼肌肉等纤维组的图像分析必须同时说明纤维的空间分布和纤维形状的差异。 这需要将点法和形状分析方法结合起来。 在本文中,我们通过将形状作为流嵌入形状来为形状估价点过程开发K函数,从而用复制内核希尔伯特空间所继承的公制结构来装备点过程域。 我们将测算点过程的空间同质性的Ripley的K函数扩大到纤维数据。 该文件提供了K功能及其纤维数据延伸的统计基础的理论说明, 我们在模拟和真实的数据集上测试开发的K功能。 这包括由粒子外壳组成的纤维数据集, 将不同债务情况下的粒子配置的空间和纤维形状行为进行视觉化。