Analysis of images of sets of fibers such as myelin sheaths or skeletal muscles must account for both the spatial distribution of fibers and differences in fiber shape. This necessitates a combination of point process and shape analysis methodology. In this paper, we develop a K-function for shape-valued point processes by embedding shapes as currents, thus equipping the point process domain with metric structure inherited from a reproducing kernel Hilbert space. We extend Ripley's K-function which measures deviations from spatial homogeneity of point processes to fiber data. The paper provides a theoretical account of the statistical foundation of the K-function and its extension to fiber data, and we test the developed K-function on simulated as well as real data sets. This includes a fiber data set consisting of myelin sheaths, visualizing the spatial and fiber shape behavior of myelin configurations at different debts.


翻译:光纤细胞或骨骼肌肉等纤维组的图像分析必须同时说明纤维的空间分布和纤维形状的差异。 这需要将点法和形状分析方法结合起来。 在本文中,我们通过将形状作为流嵌入形状来为形状估价点过程开发K函数,从而用复制内核希尔伯特空间所继承的公制结构来装备点过程域。 我们将测算点过程的空间同质性的Ripley的K函数扩大到纤维数据。 该文件提供了K功能及其纤维数据延伸的统计基础的理论说明, 我们在模拟和真实的数据集上测试开发的K功能。 这包括由粒子外壳组成的纤维数据集, 将不同债务情况下的粒子配置的空间和纤维形状行为进行视觉化。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月28日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员