Minimax optimization has become a central tool in machine learning with applications in robust optimization, reinforcement learning, GANs, etc. These applications are often nonconvex-nonconcave, but the existing theory is unable to identify and deal with the fundamental difficulties this poses. In this paper, we study the classic proximal point method (PPM) applied to nonconvex-nonconcave minimax problems. We find that a classic generalization of the Moreau envelope by Attouch and Wets provides key insights. Critically, we show this envelope not only smooths the objective but can convexify and concavify it based on the level of interaction present between the minimizing and maximizing variables. From this, we identify three distinct regions of nonconvex-nonconcave problems. When interaction is sufficiently strong, we derive global linear convergence guarantees. Conversely when the interaction is fairly weak, we derive local linear convergence guarantees with a proper initialization. Between these two settings, we show that PPM may diverge or converge to a limit cycle.
翻译:微量最大优化已成为机器学习的中心工具, 包括强力优化、 增强学习、 GANs 等应用程序。 这些应用程序通常不是非混凝土, 但现有的理论无法辨别和处理它构成的基本困难。 在本文中, 我们研究适用于非混凝土非混凝土微型最大问题的典型的准点方法( PPM ) 。 我们发现, Attouch 和 Wets 对 Moreau 信封的典型概括化提供了关键的洞察力。 关键是, 我们不仅让这个信封平滑了目标, 而且能够根据最小化变量和最大化变量之间的相互作用水平来拼凑和拼凑它。 我们从中找出三个不同的非混凝土问题区域。 当交互力足够强时, 我们得出全球线性趋同保证。 相反, 当交互作用比较弱时, 我们用一个正确的初始化来获得本地线性趋同保证。 在这两个环境之间, 我们显示 PPMPM 可能会差异或集中到一个极限周期 。