Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, which have received little attention from the community, learned templates overfit the data and lack smoothness, which can affect the predictive performance of downstream tasks. To address this limitation, we propose GPCDL, a convolutional dictionary learning framework that enforces priors on templates using Gaussian Processes (GPs). With the focus on smoothness, we show theoretically that imposing a GP prior is equivalent to Wiener filtering the learned templates, thereby suppressing high-frequency components and promoting smoothness. We show that the algorithm is a simple extension of the classical iteratively reweighted least squares, which allows the flexibility to experiment with different smoothness assumptions. Through simulation, we show that GPCDL learns smooth dictionaries with better accuracy than the unregularized alternative across a range of SNRs. Through an application to neural spiking data from rats, we show that learning templates by GPCDL results in a more accurate and visually-interpretable smooth dictionary, leading to superior predictive performance compared to non-regularized CDL, as well as parametric alternatives.


翻译:进化字典学习(CDL)是从数据中估算变换模板的问题,通常是在模板上没有事先/结构的情况下进行的。在数据偏差或低信号对噪音比率(SNR)制度中,数据偏差或低信号对噪音比率(SNR)制度很少受到社区的关注,所学的模板过重于数据,且缺乏顺畅性,这可能影响下游任务的预测性能。为解决这一局限性,我们建议GPCDL(GPCDL),这是一个在使用高斯进程(GPs)对模板执行前缀的动态词典学习框架。在侧重于顺畅的情况下,我们理论上表明,在理论上,强制实行GP相当于Wiener过滤所学模板,从而压制高频组件,促进顺畅。我们表明,算法是传统迭代重的最小方形模型的简单延伸,可以灵活地试验不同的平稳假设。我们通过模拟,显示GPDL(GPL)在一系列SNR(SNR)的不规则化替代方法中,通过对神经中更精确的精度数据进行应用,我们通过将Speal-GCD(Speal-GVLL)级预测结果学习,从Slieval-LDL)到SBlevalal-L结果学习,我们通过学习了SBilvedal-lavedal-L结果,我们通过学习了SBDBL(SBildalbilvealdaldaldaldaldaldaldaldaldaldaldaldildaldaldaldaldaldildaldalddaldaldaldaldalddddddaldalddddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldbaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal)到S,我们学习,我们学习,我们

0
下载
关闭预览

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员