A major approach to saddle point optimization $\min_x\max_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs). In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately. Our approach locates approximate solutions $x'$ and $y'$ to $\min_{x'}f(x', y)$ and $\max_{y'}f(x, y')$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y')$ with a learning rate $\eta$. On locally strong convex--concave smooth functions, we derive conditions on $\eta$ to exhibit linear convergence to a local saddle point, which reveals a possible shortcoming of recently developed robust adversarial reinforcement learning algorithms. We develop a heuristic approach to adapt $\eta$ derivative-free and implement zero-order and first-order minimization algorithms. Numerical experiments are conducted to show the tightness of the theoretical results as well as the usefulness of the $\eta$ adaptation mechanism.


翻译:最优化 $\ min_ x\ max_ y f( x, y) 的主要方法是一种梯度法,这种方法被基因对抗网络( GANs) 所普及。 相反,我们分析一种仅依赖能解决最大限度地最小化问题的神器的替代方法。我们的方法是找到大约的答案 $ $, $y $ 美元到$ min_ xx, y) 美元和 $\ max y} f( x, y) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以学习率 $, 美元。 在当地强大的 convex- concave 光滑的功能上, 我们以 $ eta 美元为条件, 显示与当地马鞍的线性趋近点, 这表明最近开发的强力对抗性强化学习算法可能存在缺陷。 我们开发了一种超度方法, 来调整 $\ detata imal- foral- yal- as the as the pressal- prefiltyleas.

0
下载
关闭预览

相关内容

在数学中,鞍点或极大极小点是函数图形表面上的一点,其正交方向上的斜率(导数)都为零,但它不是函数的局部极值。鞍点是在某一轴向(峰值之间)有一个相对最小的临界点,在交叉轴上有一个相对最大的临界点。
专知会员服务
15+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bayesian Optimisation for Constrained Problems
Arxiv
0+阅读 · 2021年5月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员