In Section 1, we revisit the partial differential equation (PDE) for the probability generating function (PGF) of the time-nonhomogeneous BDI (birth-and-death-with-immigration) process and derive a closed form solution. To the best of our knowledge, this is a new mathematical result. We state this result as Proposition 1. We state as Corollary 1 that the negative binomial distribution of the time-homogeneous BDI process discussed in Part I extends to the general time-nonhomogeneous case, provided that the ratio of the immigration rate to the birth rate is a constant. In section 1.2, we take up the heuristic approach discussed by Bartlett and Bailey (1964), and carry it out to completion by arriving at the solution obtained above,. In Section 2, we present the results of our extensive simulation experiments of the time-nonhomogeneous BD process that was analyzed in Part III-A and confirm our analytic results. In Section 3, we undertake similar simulation experiments for the BDI process that is analyzed in Section 1. As we discuss in Section 4, our stochastic model now seems more promising and powerful than has been heretofore expected. In Appendix B, a closed form solution for the M(t)/M(t)/infinity queue is obtained, as a special case of this BDI process model.
翻译:在第1节,我们重新审视了时间非同质移民(出生和死亡与移民)过程的概率产生功能(PGF)的部分差异方程(PDE),并得出了封闭式解决办法。据我们所知,这是一个新的数学结果。我们称这一结果为提案1。我们以Colololorary 1指出,第一部分所讨论的时间-异性英国数据交换过程的负面二元分布延伸到一般的时间-异性情况,条件是移民率与出生率的比率保持不变。在第1.2节,我们采取巴特利特和贝利(1964年)讨论的超常办法,通过达成上述解决办法来完成这一办法。我们在第二节中将我们在第三部分A部分中分析的对时间-异性英国数据交换过程的广泛模拟试验的结果,证实我们的分析结果。在第3节,我们为第1节中分析的移民率与出生率的比率进行了类似的模拟试验。正如我们在第4节中讨论的那样,我们所讨论的Bartletit和Bailey(1964年)讨论的超常态方法,通过达成上述解决办法的方式完成这一办法。我们在第三-A部分中将广泛模拟试验的结果似乎是具有希望的。