One of the major parts of the voice recognition field is the choice of acoustic features which have to be robust against the variability of the speech signal, mismatched conditions, and noisy environments. Thus, different speech feature extraction techniques have been developed. In this paper, we investigate the robustness of several front-end techniques in Arabic speaker identification. We evaluate five different features in babble, factory and subway conditions at the various signal to noise ratios (SNR). The obtained results showed that two of the auditory feature i.e. gammatone frequency cepstral coefficient (GFCC) and power normalization cepstral coefficients (PNCC), unlike their combination performs substantially better than a conventional speaker features i.e. Mel-frequency cepstral coefficients (MFCC).


翻译:语音识别领域的一个主要部分是选择声学特征,这些特征必须能够抵御语音信号的变异性、不匹配的条件和吵闹的环境。因此,已经开发了不同的语音特征提取技术。在本文件中,我们调查了阿拉伯语语音识别中几种前端技术的稳健性。我们评估了各种噪音比信号(SNR)在编织、工厂和地铁条件方面的五个不同特征。获得的结果显示,两种听力特征,即伽马酮频率加速系数(GFCC)和电源常态加速系数(PNCC),与它们的组合不同,它们的组合比传统的语音特征(Mel-频率缓冲系数(MFCC)要好得多。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
ECCV 2020 Spotlight | 多标签长尾识别前沿进展
PaperWeekly
5+阅读 · 2020年8月30日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
ECCV 2020 Spotlight | 多标签长尾识别前沿进展
PaperWeekly
5+阅读 · 2020年8月30日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员