In this paper we introduce an ensemble method for convolutional neural network (CNN), called "virtual branching," which can be implemented with nearly no additional parameters and computation on top of standard CNNs. We propose our method in the context of person re-identification (re-ID). Our CNN model consists of shared bottom layers, followed by "virtual" branches, where neurons from a block of regular convolutional and fully-connected layers are partitioned into multiple sets. Each virtual branch is trained with different data to specialize in different aspects, e.g., a specific body region or pose orientation. In this way, robust ensemble representations are obtained against human body misalignment, deformations, or variations in viewing angles, at nearly no any additional cost. The proposed method achieves competitive performance on multiple person re-ID benchmark datasets, including Market-1501, CUHK03, and DukeMTMC-reID.
翻译:在本文中,我们引入了“虚拟分支”的共通神经神经网络(CNN)方法,称为“虚拟分支”,该方法可以在几乎没有额外参数和计算的情况下在标准CNN上方实施。我们在个人再识别(re-ID)的背景下提出我们的方法。我们的CNN模式由共同的底层层组成,然后是“虚拟”分支,将来自正常革命和完全相连的层块的神经元分割成多个组。每个虚拟分支都接受不同数据的培训,以便专门处理不同方面,例如特定身体区域或形成方向。这样,就可以以几乎不增加任何费用的方式获得强有力的组合代表,以对付人体的不匹配、变形或角度的变异。拟议方法在多人再识别基准数据集(包括市场1501、CUHK03和DukMMC-reID)上实现竞争性表现。