Parallel search algorithms have been shown to improve planning speed by harnessing the multithreading capability of modern processors. One such algorithm PA*SE achieves this by parallelizing state expansions, whereas another algorithm ePA*SE achieves this by effectively parallelizing edge evaluations. ePA*SE targets domains in which the action space comprises actions with expensive but similar evaluation times. However, in a number of robotics domains, the action space is heterogenous in the computational effort required to evaluate the cost of an action and its outcome. Motivated by this, we introduce GePA*SE: Generalized Edge-based Parallel A* for Slow Evaluations, which generalizes the key ideas of PA*SE and ePA*SE i.e. parallelization of state expansions and edge evaluations respectively. This extends its applicability to domains that have actions requiring varying computational effort to evaluate them. The open-source code for GePA*SE along with the baselines is available here: https://github.com/shohinm/parallel_search
翻译:通过利用现代处理器的多读能力,平行搜索算法已证明可以提高规划速度,其中一种算法PA*SE通过平行国家扩张实现这一目的,而另一种算法ePA*SE则通过有效平行边缘评估实现这一目的。 ePA*SE针对的是行动空间包含具有费用昂贵但评价时间相似的行动的领域。 但是,在一些机器人领域,行动空间在评估行动成本及其结果所需的计算工作中是异质的。 受此驱动, 我们引入了GEPA*SE:基于通用的 Edge- 慢评估的平行 A**, 分别概括了PA*SE和 ePA*SE的主要观点, 即国家扩张和边缘评估的平行化。这将其适用性扩大到需要不同计算努力来评估行动的领域。 GEPA*SE和基线的开放源代码可在此查阅: https://github.com/shohinm/parllel_search)。</s>